﻿ ﻿Solutions to Selected Exercises - Essential MATLAB for Engineers and Scientists (2013)

Essential MATLAB for Engineers and Scientists (2013)

Solutions to Selected Exercises

Chapter 1

1.1

a = 3;

b = 5;

sum = a + b;

difference = a - b;

product = a * b;

quotient = a / b;

Chapter 2

2.1

(a) Comma should be replaced by decimal point

(e) Asterisk should be omitted

(f) Exponent must be integer

(h) Comma should be replaced by decimal point

2.2

(b) Decimal point not allowed

(c) First character must be letter

(d) Quotes not allowed

(h) Blanks not allowed

(i) Allowed but not recommended

(k) Asterisk not allowed

(l) Allowed but not recommended

2.3

(a) p + w/u

(b) p + w/(u + v)

(c) (p + w/(u+v))/(p + w/(u-v))

(d) sqrt(x)

(e) y^(y+z)

(f) x^(y^z)

(g) (x^y)^z

(h) x - x^3/(3*2) + x^5/(5*4*3*2)

2.4

(a) i = i + 1

(b) i = î3 + j

(c)

if e > f

g = e

else

g = f

end

(d)

if d > 0

x = -b

end

(e) x = (a + b)/(c * d)

2.5

(a) Expression not allowed on left-hand side

(b) Left-hand side must be valid variable name

(c) Left-hand side must be valid variable name

2.6

a = 2;

b = -10;

c = 12;

x = (-b + sqrt(b ^ 2 - 4 * a * c)) / (2 * a)

2.7

gallons = input('Enter gallons: ');

pints = input('Enter pints: ');

pints = pints + 8 * gallons;

litres = pints / 1.76

2.8

distance = 528;

litres = 46.23;

kml = distance / litres;

l100km = 100 / kml;

disp( 'Distance Litres used km/L L/100km' );

disp( [distance litres kml l100km] );

2.9

t = a;

a = b;

b = t;

2.10

a = [a b]; % make 'a' into a vector

b = a(1);

a(1) = [];

2.11

(a)

c = input('Enter Celsius temperature: ');

f = 9 * c / 5 + 32;

disp( ['The Fahrenheit temperature is:' num2str(f)] );

(b)

c = 20 : 30;

f = 9 * c / 5 + 32;

format bank;

disp(' Celsius Fahrenheit');

disp([c' f']);

2.12

degrees = 0 : 10 : 360;

radians = degrees / 180 * pi;

format bank;

2.13

degrees = 0 : 30 : 360;

radians = degrees / 180 * pi;

table = [degrees' sines' cosines' tans']

2.14

for int = 10 : 20

disp( [int sqrt(int)] );

end

2.15

sum(2 : 2 : 200)

2.16

m = [5 8 0 10 3 8 5 7 9 4];

disp( mean(m) )

2.17

x = 2.0833, a = 4

2.18

% With for loop

i = 1;

x = 0;

for a = i : i : 4

x = x + i / a;

end

% With vectors

i = 1;

a = i : i : 4;

x = i ./ a;

sum(x)

2.19

(b)

n = input('Number of terms? ');

k = 1 : n;

s = 1 ./ (k .\char136 2);

disp(sqrt(6 * sum(s)))

2.21

r = 5;

c = 10;

l = 4;

e = 2;

w = 2;

i = e / sqrt(r ^ 2 + (2 * pi * w * l -

1 / (2 * pi * w * c)) ^ 2)

2.22

con = [200 500 700 1000 1500];

for units = con

if units <= 500

cost = 0.02 * units;

elseif units <= 1000

cost = 10 + 0.05 * (units - 500);

else

cost = 35 + 0.1 * (units - 1000);

end

charge = 5 + cost;

disp( charge )

end

2.24

money = 1000;

for month = 1 : 12

money = money * 1.01;

end

2.26

t = 1790 : 10 : 2000;

p = 197273000 ./ (1 + exp(-0.03134 * (t - 1913.25)));

disp([t' p']);

pause;

plot(t,p);

2.27

(a)

r = 0.15;

l = 50000;

n = 20;

p = r * l * (1 + r / 12) ^ (12 * n) / ...

(12 * ((1 + r / 12) ^ (12 * n) 1))

2.28

(a)

r = 0.15;

l = 50000;

p = 800;

n = log(p / (p - r * l / 12)) / (12 * log(1 + r / 12))

Chapter 3

3.1 You should get a picture of tangents to a curve.

3.2

(a) 4

(b) 2

(c) Algorithm (attributed to Euclid) finds the HCF (highest common factor) of two numbers using the fact that it divides exactly into the difference between the two numbers, and that, if the numbers are equal, they are equal to their HCF.

3.3

f = input('Enter Fahrenheit temperature: ');

c = 5 / 9 * (f {\minuscda} 32);

disp( ['The Celsius temperature is: ' num2str(c)] );

3.4

a = input('Enter first number: ');

b = input('Enter second number: ');

if a < b

disp( [ num2str(b) ' is larger.'] );

elseif a > b

disp( [ num2str(a) ' is larger.'] );

else

disp( 'Numbers are equal.' );

end

3.6 1. Input a, b, c, d, e, f

2. u = ae - db, v = ec - bf

3. If u = 0 and v = 0, then

Lines coincide

Otherwise if u = 0 and , then

Lines are parallel

Otherwise

x = v/u, y = (af - dc)/u

Print x, y

4. Stop

a = input('Enter a: ');

b = input('Enter b: ');

c = input('Enter c: ');

d = input('Enter d: ');

e = input('Enter e: ');

f = input('Enter f: ');

u = a * e - b * d;

v = c * e - b * f;

if u == 0

if v == 0

disp('Lines coincide.');

else

disp('Lines are parallel.');

end

else

x = v / u;

y = (a * f - d * c) / u;

disp( [x y] );

end

Chapter 4

4.2

(a) log(x + x ^ 2 + a ^ 2)

(b) (exp(3 * t) + t ̂ 2 * sin(4 * t)) * (cos(3 * t)) ̂ 2

(c) 4 * atan(1)

(d) sec(x)̂2 + cot(x)

(e) atan(a / x)

4.3

m = input('Enter length in metres: ');

inches = m * 39.37;

feet = fix(inches / 12);

inches = rem(inches, 12);

yards = fix(feet / 3);

feet = rem(feet, 3);

disp( [yards feet inches] );

4.5

a = 10;

x = 1;

k = input('How many terms do you want? ');

for n = 1 : k

x = a * x / n;

if rem(n, 10) == 0

disp( [n x] );

end

end

4.6

secs = input('Enter seconds: ');

mins = fix(secs / 60);

secs = rem(secs, 60);

hours = fix(mins / 60);

mins = rem(mins, 60);

disp( [hours mins secs] );

Chapter 5

5.2

(a) 1 1 0

(b) 0 1 0

(c) 1 0 1

(d) 0 1 1

(e) 1 1 1

(f) 0 0 0

(g) 0 2

(h) 0 0 1

5.3

neg = sum(x < 0);

pos = sum(x > 0);

zero = sum(x == 0);

5.7

units = [200 500 700 1000 1500];

cost = 10 * (units > 500) + 25 * (units > 1000) + 5;

cost = cost + 0.02 * (units <= 500) .* units;

cost = cost + 0.05 * (units > 500 & units <= 1000) .*

(units - 500);

cost = cost + 0.1 * (units > 1000) .* (units - 1000);

Chapter 6

6.6

function x = mygauss(a, b)

n = length(a);

a(:,n+1) = b;

for k = 1:n

a(k,:) = a(k,:)/a(k,k); % pivot element must be 1

for i = 1:n

if i ~= k

a(i,:) = a(i,:) - a(i,k) * a(k,:);

end

end

end

% solution is in column n+1 of a:

x = a(:,n+1);

Chapter 7

7.1

function pretty(n, ch)

line = char(double(ch)*ones(1,n));

disp(line)

7.2

function newquot(fn)

x = 1;

h = 1;

for i = 1 : 10

df = (feval(fn, x + h) - feval(fn, x)) / h;

disp( [h, df] );

h = h / 10;

end

7.3

function y = double(x)

y = x * 2;

7.4

function [xout, yout] = swop(x, y)

xout = y;

yout = x;

7.6

% Script file

for i = 0 : 0.1 : 4

disp( [i, phi(i)] );

end

% Function file phi.m

function y = phi(x)

a = 0.4361836;

b = -0.1201676;

c = 0.937298;

r = exp(-0.5 * x * x) / sqrt(2 * pi);

t = 1 / (1 + 0.3326 * x);

y = 0.5 - r * (a * t + b * t * t + c * t ^ 3);

7.8

function y = f(n)

if n > 1

y = f(n - 1) + f(n - 2);

else

y = 1;

end

Chapter 8

8.1

balance = 1000;

for years = 1 : 10

for months = 1 : 12

balance = balance * 1.01;

end

disp( [years balance] );

end

8.2

(a)

terms = 100;

pi = 0;

sign = 1;

for n = 1 : terms

pi = pi + sign * 4 / (2 * n - 1);

sign = sign * (-1);

end

(b)

terms = 100;

pi = 0;

for n = 1 : terms

pi = pi + 8 / ((4 * n - 3) * (4 * n - 1));

end

8.3

a = 1;

n = 6;

for i = 1 : 10

n = 2 * n;

a = sqrt(2 - sqrt(4 - a * a));

l = n * a / 2;

u = l / sqrt(1 - a * a / 2);

p = (u + l) / 2;

e = (u - l) / 2;

disp( [n, p, e] );

end

8.5

x = 0.1;

for i = 1 : 7

e = (1 + x) ^ (1 / x);

disp( [x, e] );

x = x / 10;

end

8.6

n = 6;

T = 1;

i = 0;

for t = 0:0.1:1

i = i + 1;

F(i) = 0;

for k = 0 : n

F(i) = F(i) + 1 / (2 * k + 1) * sin((2 * k + 1) *

pi * t / T);

end

F(i) = F(i) * 4 / pi;

end

t = 0:0.1:1;

disp( [t' F'] )

plot(t, F)

8.8

sum = 0;

terms = 0;

while (sum + terms) <= 100

terms = terms + 1;

sum = sum + terms;

end

disp( [terms, sum] );

8.10

m = 44;

n = 28;

while m ~= n

while m > n

m = m - n;

end

while n > m

n = n - m;

end

end

disp(m);

Chapter 9

9.1

t = 1790:2000;

P = 197273000 ./ (1+exp(-0.03134*(t-1913.25)));

plot(t, P), hold, xlabel('Year'), ylabel('Population size')

census = [3929 5308 7240 9638 12866 17069 23192 31443 38558

...

50156 62948 75995 91972 105711 122775

131669 150697];

census = 1000 * census;

plot(1790:10:1950, census, 'o'), hold off

9.2

a = 2;

q = 1.25;

th = 0:pi/40:5*pi;

subplot(2,2,1)

plot(a*th.*cos(th), a*th.*sin(th)), ...

title('(a) Archimedes') % or use polar

subplot(2,2,2)

plot(a/2*q.^th.*cos(th), a/2*q.^th.*sin(th)), ...

title('(b) Logarithmic') % or use polar

9.4

n=1:1000;

d = 137.51;

th = pi*d*n/180;

r = sqrt(n);

plot(r.*cos(th), r.*sin(th), 'o')

9.6

y(1) = 0.2;

r = 3.738;

for k = 1:600

y(k+1) = r*y(k)*(1 - y(k));

end

plot(y, '.w')

Chapter 11

11.1

x = 2;

h = 10;

for i = 1 : 20

h = h / 10;

dx = ((x + h) ^ 2 - x * x) / h;

disp( [h, dx] );

end

Chapter 13

13.1

heads = rand(1, 50) < 0.5;

tails = tails * double('T');

13.2

bingo = 1 : 99;

for i = 1 : 99

temp = bingo(i);

swop = floor(rand * 99 + 1);

bingo(i) = bingo(swop);

bingo(swop) = temp;

end

for i = 1 : 10 : 81

disp(bingo(i : i + 9))

end

disp(bingo(91 : 99))

13.4

circle = 0;

square = 1000;

for i = 1 : square

x = 2 * rand - 1;

y = 2 * rand - 1;

if (x * x + y * y) < 1

circle = circle + 1;

end

end

disp( circle / square * 4 );

Chapter 14

14.1

(a) Real roots at 1.856 and −1.697; complex roots at

(b) 0.589, 3.096, 6.285, …  (roots get closer to multiples of π)

(c) 1, 2, 5

(d) 1.303

(e) −3.997, 4.988, 2.241, 1.768

14.2 Successive bisections: 1.5, 1.25, 1.375, 1.4375, and 1.40625 (exact answer: 1.414214 …, so the last bisection is within the required error)

14.4 After 30 years, exact answer: 2 117 ()

14.6 The differential equations to be solved are

The exact solution after 8 hours is and .

14.8

function s = simp(f, a, b, h)

x1 = a + 2 * h : 2 * h : b {\minuscda} 2 * h;

sum1 = sum(feval(f, x1));

x2 = a + h : 2 * h : b {\minuscda} h;

sum2 = sum(feval(f, x2));

s = h / 3 * (feval(f, a) + feval(f, b) +

2 * sum1 + 4 * sum2);

With 10 intervals (), luminous efficiency is 14.512725%. With 20 intervals, it is 14.512667%. These results justify the use of 10 intervals in any further computations. This is a standard way to test the accuracy of a numerical method: halve the step-length and see how much the solution changes.

14.9

% Command Window

beta = 1;

ep = 0.5;

[t, x] = ode45(@vdpol, [0 20], [0; 1], [], beta, ep);

plot(x(:,1), x(:,2))

% Function file vdpol.m

function f = vdpol(t, x, b, ep)

f = zeros(2,1);

f(1) = x(2);

f(2) = ep * (1 - x(1)^2) * x(2) - b^2 * x(1);

﻿