Migration to IPv6 - Computer network technologies and services (2015)

Computer network technologies and services (2015)

Chapter 4
Migration to IPv6

4.1 Introduction

During the migration phase, hosts should gradually start being able to reach IPv6 destinations while keeping being able to reach IPv4 destinations. Migrating all network devices is a condition needed but not sufficient: the user needs to make them work together by making a new addressing plan for the whole network.

4.1.1 Migrating hosts

Migrating applications

Introducing IPv6 support into applications results in need to change the source code:

• servers: the running process on a server should open two threads, one on listening to the IPv4 socket and another one on listening to the IPv6 socket, in order to be able to serve both IPv4 and IPv6 requests;

• clients: applications such as web browsers should be able to print in output and get in input addresses in the new format.

Migrating operating systems

(a) Dual stack without dual (b) Dual stack with dual layer. layer.

Applications lie mostly on the operating system libraries, which can introduce IPv6 support by adopting the dual stack approach:

• without dual layer: the operating system processes independently IPv4 and IPv6 addresses ⇒ the software should be able to manage both IPv4 and IPv6 addresses;

the software should be able to manage both IPv4 and IPv6 addresses; mapped IPv6 address ⇒ the software can just support IPv6 addresses without caring of IPv4 addresses.

The variant with dual layer is the most used one because it moves the complexity to the core of the operating system.

4.1.2 Migrating network devices

Migrating switches

Although in theory switches should be not affected at all by changes at layer 3 because they work up to the layer 2, there could be some troubles with additional functions: for example IGMP snooping, a functionality used to filter incoming multicast packets, needs to look inside the packet ⇒ as the packet format and fields change the switch can not recognize the multicast IPv6 packets and it discards them.

Migrating routers1 Nowadays routers are mostly ready for IPv6, even if performance in IPv6 is still worse than the one in IPv4 because of lack of experience and lower traffic demand.

Tipically routers supporting IPv6 adopt the dual stack ‘ships in the night’-like approach: IPv4 and IPv6 are supported by two independent stacks for transport layer ⇒ this requires the complete duplication for all components: routing protocols, routing tables, access lists, etc.

Routing tables Routing in IPv6 is performed in the same way as IPv4 but it requires two distinct routing tables, one for IPv4 routes and another for IPv6 routes. IPv6 routing tables can store several types of entries, including:

• indirect entries (O/S codes): they specify the addresses, typically link local, of the interfaces of the next-hop routers to which to send packets addressed towards remote links;

• direct entries: they specify the interfaces of the router itself through which to send packets addressed towards local links:

connected networks (C code): they specify the prefixes of the local links;

interface addresses (L code): they specify the interface identifiers in the local links. Routing protocols Routing protocols supporting IPv6 can adopt two approaches:

• integrated routing (e.g. BGP): the protocol allows to exchange both IPv4 and IPv6 routing information at the same time ⇒ IPv4 and IPv6 addresses belonging to the same destination can be transported via a single message ⇒ higher efficiency;

• ships in the night (e.g. RIP, OSPF): the protocol allows to exchange only IPv6 routing information ⇒ given a destination, a message needs to be exchanged for its IPv4 address and another message for its IPv6 address, and the messages are completely independent of each other ⇒ higher flexibility: two different protocols can be used, one for IPv4 routing information and another for IPv6 routing information.

1Please refer to chapter IPv6 routing in lecture notes ‘Protocolli e architetture di routing’.

4.1.3 Migrating DNSes

DNSes supporting IPv6 can map two IP addresses to the same alias: an IPv4 address and an IPv6 one ⇒ a public destination can be reachable via either IPv4 or IPv6.

DNSes supporting IPv6 can return IPv6 addresses not only via IPv6, but also via IPv4: DNS messages in fact belong to the application layer, so the transport layer used to forward the DNS queries and replies does not matter. DNSv6 queries are performed by the following command: set q=aaaa.

A company may decide to offer access to its public website also via IPv6. However, presently most traffic is via IPv4, so generally the service for IPv4 traffic is more reliable in terms of performance and fault tolerance than the one for IPv6 traffic. Therefore the company, especially if it bases its business on its website, does not want the user connecting via IPv6 decides to change to another competitor website because of performance problems. A possible solution is to perform some preliminary assessments to test the performance of the connectivity between the user and the company server, and to implement an additional mechanism into DNSes: they should be able to look at the source address of the DNS query, and return either just the IPv4 address if no assessments have been performed for the connectivity, or both the IPv4 and IPv6 addresses if the performance are good enough.

4.1.4 Tunneling

Network-oriented tunneling solutions

The network will not be IPv6-compatible from day zero ⇒ IPv6 traffic may need to traverse IPv4-only network portions. Network-oriented tunneling solutions enable connectivity among IPv6 networks even if they are connected through an IPv4-only infrastructure, and consist in encapsulating the IPv6 packet inside an IPv4 header just for transporting it along the tunnel:

The size for the tunneled packet, including the 20-byte-long IPv4 header, must not exceed the maximum size for IPv4 packets ⇒ two solutions are possible:

• fragmentation: the routers should fragment the IPv4 packet before sending it into the tunnel ⇒ fragmentation is deprecated due to performance reasons;

• smaller IPv6 packets: the hosts should generate IPv6 packets with a smaller MTU size to take into account the extra-size due to the IPv4 header insertion ⇒ routers can specify the allowed MTU size through the ‘Router Advertisement’ ICMPv6 messages.

Typically the network-oriented tunneling solutions require manual configuration, and encapsulation can be based on IPv6 in IPv4 (protocol type = 41), GRE (see section 5.2.2), IPsec, etc.

Host-oriented tunneling solutions

Host-oriented tunneling solutions are more plug-and-play for hosts, but they are not professional solutions and do not solve the problem of IPv4 address shortage because every host still needs to have an IPv4 address.

4.2 Bringing IPv6 support to the network edges 4.2.1 NAT-based solutions

Figure 4.2: Main NAT-based solutions.

The goal is to migrate big provider’s networks, so that IPv4 and/or IPv6 clouds at the network edges can use the IPv6 backbone to interoperate. The common scenario is a user who wants to connect to an IPv4 destination through the provider’s IPv6 network.

All the available options make use of the NAT. The NAT usage is a bit countercurrent as IPv6 had among its goals the one of avoiding the NAT usage in networks because of several problems brought by NATs (change of packets in transit, problems on peer-to-peer networks, etc.). However the fact that these solutions are based on NATs presents a variety of advantages: NATs are largely spread over networks, their problems and limitations are known, applications which may have problems in going through NATs are known; so in general the advantage is the bigexperience gained so far.

Major components

In NAT-based solutions there are three major components:

Customer-Premises Equipment (CPE): it is the router at the customer edge just before the provider’s network;

Address Family Transition Router (AFTR): it is an IPv6 Tunnel Concentrator, that is the device at the end of an IPv6 tunnel;

NAT44/NAT64: it is a NAT for translation from IPv4/IPv6 addresses to IPv4 addresses.

Main NAT-based solutions
• NAT64 (section 4.2.2);
• Dual-Stack Lite (DS-Lite): NAT44 + 4-over-6 tunnel (section 4.2.3);

• Dual-Stack Lite Address+Port (DS-Lite A+P): DS-Lite with preconfigured port ranges (section 4.2.4);

• NAT444: CGN + CPE NAT44, that is when a home user, which gets the service from the telephone company, adds a NAT in its own home network; every packet outcoming from the home network is subjected to two address translations;

• Carrier Grade NAT (CGN): large-scale NAT44, that is NAT used by telephone companies to map the hundreds of thousands of (users’) private addresses into the limited public addresses which are available.

For migration of big networks oriented tomobile devices NAT64 solution is being chosen. In order to migrate to IPv6 keeping the IPv4 compatibility at the edges of the network some telephone operators are planning massive migrations to DS-Lite because it is a plenty tested solution, and there are several compatible devices already on sale.
The A+P solution is not taken seriously into account yet due tolack of experience.

4.2.2 NAT64

IPv6-only host IPv6-only network

IPv4 + IPv6 network NAT64+DNS64

DNS IPv4 network IPv4-only host www.example.com

1. The IPv6-only user types www.example.cominto his browser, and being IPv6 he sends an AAAA query to the provider’s DNS64. Let us suppose that www.example.comhas the IPv4 address ‘20.2.2.2’.

2. The DNS64, in case it has not the name resolution, needs to send the query to an upper DNS, supposedly in the IPv4 network.

a. In the best case the DNS64 sends the AAAA query to the upper DNS and it gets a reply of type AAAA (so IPv6), which it transmits as it is back to the host (it is fully possible to send via an IPv4 packet a DNS query requiring a name resolution into an IPv6 address).

b. In the worst case the upper DNS has not IPv4 support, so it replies with a ‘Name error’; the DNS64 sends again the query but this time of type A, following which it will gets a proper reply. This reply will be converted into AAAA and transmitted back to the host. In the reply transmitted to the host, the last 32 bits are the same as the ones sent by the upper DNS in the record of type A, while the other 96 bits complete the IPv6 address; therefore the final address will be ‘64:FF9B::20.2.2.2’.

3. Now the host is ready to set up a TCP connection to www.example.com. 4. The NAT64 comes into play: it converts the IPv6 packet coming from the host into IPv4, and it performs the reverse operation for packets coming from 20.2.2.2.

Considerations

• In such a scenario there is no tunneling: the IPv6 header is just replaced with an IPv4 one and vice versa.

• The IPv6-only host is not aware of the fact that the destination address is related to an IPv4 address.

• The NAT64 not only is able to translate IPv6 addresses into IPv4 addresses, but in a certain manner it makes the network believe that 232IPv6 addresses are available as every packet from the host to the NAT64 will have ‘64:FF9B::20.2.2.2’, with prefix ‘64:FF9B/96’, as a target address.

• The provider’s network, the one where the NAT64 and the DNS64 are, is IPv6-native, therefore a host in the provider’s network can directly contact another host having IPv6 support without involving the NAT64 at all.

• ‘64:FF9B/96’ is the addressing space specifically standardized for this translation technique, assigned to the NAT64, but the network administrator may decide to change it according to his needs. Note that the network administrator needs to configure the routing so that every packet having that prefix will go to the NAT64, and he needs to configure the NAT64 so that it will translate every IPv6 packet having that prefix into IPv4 and it will forward it into the IPv4 cloud.

Drawbacks

• The presence of the NAT introduces a typical issue: the host behind the NAT can not be easily reached from the outside.

• Often it happens that when a DNS has not the address resolution it does not reply at all, instead of sending a ‘Name error’; this results in a lengthening of the times due to the waiting for timeout from DNS64, which when the timeout expires sends a query of type A.

• This solution does not work if the user wants to type directly the IPv4 address: the user always needs to specify the name for the destination.

4.2.3 DS-Lite

Dual-Stack Lite (DS-Lite) solution consists in simplifying CPEs by moving the NAT and DHCP functionalities to the edge of the provider’s network, so into a device acting as AFTR and as CGN-NAT44.

1. The provider’s DHCP server assigns an IPv6 address, unique within the provider’s network, to each host of each CPE.

IPv4-only host

IPv6-only host

IPv4 + IPv6 network

DS-Lite CPE

IPv6 network

DS-Lite CGN+NAT44 IPv6 network

IPv4 network

2. When the user needs to send IPv4 packets a tunneling operation is required, in order to encapsulate IPv4 packets into IPv6 packets as the provider’s network is IPv6-only. So, when a CPE receives an IPv4 packet it needs to tunnel it into an IPv6 packet to be able to send it to the AFTR after which there is the IPv4 cloud; therefore the scenario is made up of a lot of tunneling operations in the provider’s IPv6 network between the AFTR and one among the several users’ CPEs. In particular, the packet between CPE and AFTR will have as a target IPv6 address the AFTR one, and as a target IPv4 address the destination one in the IPv4 network.

3. The AFTR, after removing the IPv6 header, sends it to the NAT44 which replaces the IPv4 (private) source address with the IPv4 address to which the NAT will receive packets associated to this flow.

The main advantage for DS-Lite is the one of considerably reducing the number of provider’s public addresses.
Can there be any duplicate IPv4 addresses in the provider’s network? No, because the NAT44 directly translates the hosts’ IPv4 addresses to the available public IPv4 addresses. If there were duplicate private IPv4 addresses the NAT would have ambiguity problems.

Disadvantages

• An IPv4 host can not contact an IPv6 destination ⇒ IPv6 destinations can be reached just by IPv6 hosts. Instead, an IPv6 host can send and receive packets from IPv6 nodes without going through the provider’s AFTR.

• Some kinds of applications can not work in such a situation: the fact that the NAT can not be managed by the user, as it is not on the CPE anymore, makes it impossible to perform some common operations such as opening/closing the ports required for specific applications.

4.2.4 DS-Lite A+P

IPv6-only network 1 R1

IPv6-only network 2 R2 IPv6-only ISP NAT IPv4-only network

AFTR

IPv6-only network 3 R3

Dual-Stack Lite Address+Port (DS-Lite A+P) solution consists in still having a provider’s IPv6-only network, but the NAT is moved onto the CPE so that the user can configure it according his needs.

Like in DS-Lite, an IPv4 packet outcoming from the CPE is still tunnelized as the provider’s network is IPv6-only.
The fact that the NAT on every CPE requires a public IPv4 address is solved by allowing to duplicate public IPv4 addresses, and the CPEs are distinguished based on the port. In fact each CPE uses a specific port range, and the AFTR, knowing the port range used by every CPE, is able to distinguish flows from and to a specific CPE nevertheless there are several CPEs having the same public IPv4 address.
This solution is similar to the DS-Lite one, but the private IPv4 address space is more under the control of the end user, because as the NAT is on the user’s CPE the user can configure it, even if with some limitations: he can not open and use ports which are not within his range. This method allows to save IPv4 addresses (but still less with respect to DS-Lite).
This solution in Italy is basically illegal because, as the port number is not recorded, in case of attack it would not be possible to trace back to the attacker.

4.3 Transporting IPv6 traffic in the core network

The main goal is to have IPv6 traffic over the global network without upsetting the network existing for more than 20 years which at present is working well. It would not be possible to sustain the human and technological costs for worldwide migration to radically change the existing IPv4 network to make it IPv6.

4.3.1 6PE

The goal for 6 Provider Edge (6PE) solution is to connect IPv6 clouds one with each other through a MPLS backbone. 6PE requires that the operator’s network works by MPLS. In this scenario the provider’s edge is represented by the first routers which users’ CPEs meet.

Idea
• Keeping the network core unchanged (without excluding the possibility for future changes).
• Adding the IPv6 support to the edge of the provider’s network.
• Delivering IPv6 routing information via MPLS/BGP, like in VPNs (see section 5.4.2).

Requirements

2001:1::/64 2001:3::/64

CE-1 CE-3

PE-1 P-1 P-2 PE-2

CE-2 CE-4

The primary requirement is to have an MPLS core network.

In the picture:

• the MPLS core network is the one made up of PE-1, P-1, P-2, PE-2;
• the two side devices, PE-1 and PE-2, are partially ‘immersed’ in the MPLS network;

• links between CE and PE can be thought as links providing an ADSL connection to the home user.

6PE is thought to take a fully-working core network, able to transport IPv4 packets via MPLS, and add the IPv6 support just to the provider’s edge routers (PE). In fact, once a packet is encapsulated into an MPLS packet, the intermediate devices will not be interested anymore in the type of contained packet, but they will be interested just in the label which allows them to distinguish the LSP to which to route it.

In fact, on PEs a further update is required in order to add the MG-BGP support, protocol which allows to transport and communicate both IPv4 and IPv6 routes.
Then the big advantage for this solution consists in requiring to update just PEs and not all intermediate routers: after all, an operation that the provider can manage without high costs.

How IPv6 networks are advertized
1. CE-3 advertizes that it is able to reach the IPv6 network ‘2001:3::/64’.
2. This information is received also by PE-2.

3. PE-2 sends this information to all the PEs in the network, saying that it is able to reach ‘2001:3::/64’ through the next hop ‘FFFF:20.2.2.2’, nevertheless its interface is IPv4 (this is because if an IPv6 route is given an IPv6 next hop needs to be given).

4. PE-1 receives this information.

5. PE-1 sends the received information to all the routers connected to it, so also to the home CEs, saying that it is able to reach the network ‘2001:3::/64’.

6. If an MPLS path between PE-1 and the address ‘20.2.2.2’ does not exist yet, the classical MPLS mechanisms (so the LDPv4 signaling protocol) are used to set up this path.

How IPv6 traffic is routed

To route an IPv6 packet two labels are used:

LDP/IGPv4 external label MP-BGP internal label IPv6 packet to PE-2 to CE-3 to IPv6 destination

• MP-BGP label (internal): it identifies the destination CE to which the destination PE needs to send the packet;

• LDP/IGPv4 label (external): it identifies the LSP between the two PEs over the MPLS network.

Let us suppose that a host in the network ‘2001:1::/64’ wants to send a packet to a host in network ‘2001:3::/64’:

1. the packet arrives at CE-1;
2. CE-1 knows that the network ‘2001:3::1/64’ exists and it sends the packet towards PE-1;
3. PE-1 puts two labels in front of the packet: the internal label and the external label;
4. PE-1 sends the packet to P-1, which sends it to P-2;

5. P-2, that is the penultimate hop, removes the external label from the packet (penultimate label popping) and sends it to PE-2;

6. PE-2 removes the internal label and sends the packet to CE-3;

7. CE-3 forwards the packet to the destination in the network ‘2001:3::/64’.

Considerations

• PE routers have to be dual stack and to support MP-BGP, while intermediate routers do not need any change.

• This solution provides customers with a native IPv6 service without changing the IPv4 MPLS core network (it requires minimal operational costs and risks).

• This solution scales as long as there are few IPv6 clouds to be deployed.

4.4 Security issues

People have little experience with security problems because IPv6 is not used much yet ⇒ IPv6 could still have undiscovered security holes which may be exploited by attackers. Moreover, during the migration phase hosts need to open two ports in parallel, one for IPv4 and another one for IPv6 ⇒ two ports have to be protected against attacks from outside.

DDoS attacks with SYN flooding A host interface can have multiple IPv6 addresses ⇒ it can generate multiple TCP SYN requests, each one with a different source address, to a server in order to saturate its memory by making it open several unclosed TCP connections.

Fake Router Advertisement messages A host may start sending ‘Router Advertisement’ messages advertising fake prefixes ⇒ the other hosts in the link will start to send packets with wrong prefixes in their source addresses.